MM866: Introduction to HPC and Quantum Computing

The Study Board for Science

Teaching language: English
EKA: N310076102
Assessment: Second examiner: None
Grading: Pass/Fail
Offered in: Odense
Offered in: Autumn
Level: Master

STADS ID (UVA): N310076101
ECTS value: 5

Date of Approval: 23-04-2024


Duration: 1 semester

Version: Approved - active

Comment

If there are fewer than 5 students the course might run as a guided reading course. 

Entry requirements

None

Academic preconditions

Students taking the course are expected to have knowledge of:
  • Programming (in at least one programming language) 
  • Basic concepts of linear algebra (vector spaces, matrices, eigenvalues)
  • Basic concepts of complex numbers and vector spaces
  • Basic understanding of logic gates 

Course introduction

The aim of the course is to use small HPC systems and quantum computers, which is important in regard to future computer architecture. The skills learned in this course can be applied in a variety of subjects, such as applied mathematics, physics, chemistry and biology. 

The course builds on the knowledge acquired in the courses MM553: Computational Physics, and MM533: Mathematical and Numerical Analysis, and gives an academic basis for studying the topics of quantum computing.

Expected learning outcome

The learning objective of the course is that the student demonstrates the ability to:
  • Understand the concept of parallel computing. 
  • Write code that uses multiple cores on multiple computers simultaneously.
  • Understand the principle of how quantum computers operate. 
  • Develop small quantum circuits.
  • Present the results in a short presentation

Content

The following main topics are contained in the course:

  • High Performance Computing 
  • Quantum Computing

Literature

See itslearning for syllabus lists and additional literature references.

Examination regulations

Exam element a)

Timing

Autumn

Tests

Project

EKA

N310076102

Assessment

Second examiner: None

Grading

Pass/Fail

Identification

Full name and SDU username

Language

Normally, the same as teaching language

Examination aids

To be announced during the course

ECTS value

5

Indicative number of lessons

56 hours per semester

Teaching Method

At the faculty of science, teaching is organized after the three-phase model ie. intro, training and study phase.
  • Intro phase: 24 hours
  • Training phase: 32 hours, hereof tutorials: 3 hours
Activities during the study phase:

  • Solving the project assignments
  • Reflection upon the intro and training sections.
  • Self-study of specific topics from the textbook
  • Independent review of the intro phase and training phase

Teacher responsible

Name E-mail Department
Benjamin Jäger jaeger@imada.sdu.dk Computational Science

Timetable

Administrative Unit

Institut for Matematik og Datalogi (matematik)

Team at Educational Law & Registration

NAT

Offered in

Odense

Recommended course of study

Profile Education Semester Offer period

Transition rules

Transitional arrangements describe how a course replaces another course when changes are made to the course of study. 
If a transitional arrangement has been made for a course, it will be stated in the list. 
See transitional arrangements for all courses at the Faculty of Science.