NAT809: Assembling minimal living systems

Study Board of Science

Teaching language: English
EKA: N710001102
Censorship: Second examiner: Internal
Grading: 7-point grading scale
Offered in: Odense
Offered in: Autumn
Level: Master's level course approved as PhD course

STADS ID (UVA): N710001101
ECTS value: 5

Date of Approval: 25-04-2019


Duration: 1 semester

Version: Approved - active

Comment

07010501 (former UVA) is identical with this course description. 

Entry requirements

None

Academic preconditions

For the chemistry, pharmacy and biology students, the course builds on knowledge acquired in their respective undergraduate courses (incl. knowledge about chemistry lab work). For the physics, computer science and engineering students the course builds on the knowledge acquired in their respective undergraduate courses (knowledge about simulations and/or electronics hardware/instrumentation).

Course introduction

The aim of the course is to enable the student to understand basic principles behind minimal living processes, which is important for a wide range of scientific and technological areas ranging from physics, chemistry and biology to artificial intelligence and engineering.

Since this course addresses the basic components and properties of simple living and life-like processes, and since simple living processes can be implemented in (bio)chemical (wetware), robotics (hardware) and computer systems (software), this course can be followed by chemistry, pharmacy and biology students as well as physics, engineering and computer science students.

In relation to the competence profile of the degree it is the explicit focus of the course to:

  • Develop competence about the fundamental principles, functions and processes of simple living systems 
  • Provide skills to evaluate possibilities and limitations of implementing living and life-like processes in different materials (wetware, hardware, software and hybrids)
  • Provide knowledge about technological possibilities of artificial or modified living processes

Expected learning outcome

The learning objectives of the course are that the student demonstrates the ability to:

  • Explain the physicochemical properties of the molecules used in protocell design and how these properties contribute to protocell processes.
  • Explain the interplay between the functional components in a simple living system, including the challenges and possibilities for implementing self-replicating robots or hybrid systems.
  • Explain the role of autocatalysis, self-assembly, self-organization, evolution and energetics in minimal living systems.
  • Explain the selected subject of their individual project and its significance in the field.
  • Carry out initial experiments with or develop simple simulations of one of the selected system with the advice of appropriate supervisors. Interpret results and their relevance with respect to the larger context, i.e., what might the end result be? What would be the next experiment/simulation?
  • Write a short report in the form of a short article.




Content

The following main topics are contained in the course:

This course is intended as an introduction to the physics, chemistry and biology of Artificial Life, including Synthetic Biology and self-replicating computational- and robotics (3D printing) systems. We explore the functional nature of minimal living systems in order to develop an understanding of life itself. With an understanding of fundamental concepts of living systems, we investigate various approaches to create life in the laboratory, mainly focused on physicochemically based protocells but also within technological systems. Lectures will introduce the main science and engineering ideas, approaches, and accomplishments as well as outline current research directions of this field. Through a small individual project (experimental or computational) the students will develop some in depth knowledge in a narrow area chosen in consultation with one of the teachers. Furthermore, the students will be actively involved in the knowledge acquisition through mandatory readings of relevant research papers and the presentation of one or two papers related to their project.

Through the individual project, the students will develop his/her ability to propose and carry out actual research in the relevant area. Further, the students will be getting a broad overview of the subject through the presentation and discussion hours, which are mandatory.

The individual project is chosen together with one of the course teachers and can e.g. be selected as a problem from:

  • Origin of life / Astrobiology
  • Protocell assembly
  • Self-replicating computational systems and simulations
  • 3D printing of 3D printers

The course will both prepare the students for research within these areas, and expose them to novel methodologies developed to investigate and construct living, life-like and intelligent systems with broad application ranges in nanoscience, bio- and information technology, computing, pharmacy, novel materials and robotics.

Literature

See Blackboard for syllabus lists and additional literature references.

Examination regulations

Exam element a)

Timing

Reexamination in the same exam period or immediately thereafter. The examination type at reexamination may differ from the one at the ordinary examination.

Tests

Oral examination

EKA

N710001102

Censorship

Second examiner: Internal

Grading

7-point grading scale

Identification

Full name and SDU username

Language

Normally, the same as teaching language

Examination aids

 Allowed exam aids: Report written by student 

ECTS value

5

Additional information

Oral examination based on report prepared by student (50%) as well as topic selected from the readings and discussions of texts and articles (50%). 

Reexamination in the same exam period or immediately thereafter.
The examination type at reexamination may differ from the one at the ordinary examination.

Indicative number of lessons

49 hours per semester

Teaching Method

Activities during the study phase: Individual project.

Teacher responsible

Name E-mail Department
Steen Rasmussen steen@sdu.dk

Timetable

Administrative Unit

Det Naturvidenskabelige Fakultet

Team at Registration & Legality

NAT

Recommended course of study

Profile Programme Semester Period