
MM837: Computational Physics
Comment
Entry requirements
Academic preconditions
Students taking the course are expected to have knowledge of:
- Differentiation and integration of functions of one and several variables
- Basic concepts of linear algebra (vector spaces, matrices, eigenvalues ...)
- Ordinary Differential Equations
- Basic programming.
As obtained in DM550 (Introduction to Programming) , MM547 (Ordinary Differential Equations: Theory, Modelling and Simulation ), MM536 (Calculus for Mathematics) and MM538 (Algebra and Linear Algebra) .
Course introduction
methods in order to solve non-trivial problems in nonetheless practical
and efficient way. Computational methods have become a standard approach
in many areas of science, especially in condensed matter, particle
physics, hydrodynamics, plasma-dynamics, biophysics and chemistry.
The course provides tools to address problems which typically cannot be
solved by analytical methods.
Expected learning outcome
The learning objectives of the course are that the student demonstrates the ability to:
- Reflect
on the numerical and algorithmic principles presented during the course
and connect them with other numerical/computational techniques from
other courses in the curriculum. - Reflect on the most appropriate solution techniques for the problem at hand, based on the knowledge acquired in the curriculum.
- Present and reflect on the scientific results achieved in a scientifically correct way.
Content
The following main topics are contained in the course:
- Numerical methods for classical Hamiltonian systems
- The N-body problem
- Integration schemes
- Numerical methods for Schroedinger equation in one dimension
- Monte Carlo Simulations of Spin Systems:
- Markov chains and Metropolis algorithm
- Cluster algorithm
- Wang-Landau algorithm
- Simulation of two-dimensional models
- Numerical Simulation in Quantum Field Theories
- Heatbath algorithm for Yang-Mills theories
- Hybrid Monte Carlo algorithm for matter fields
Literature
Examination regulations
Exam element a)
Timing
Tests
Mandatory assignments
EKA
Assessment
Grading
Identification
Language
Examination aids
To be announced during the course
ECTS value
Indicative number of lessons
Teaching Method
Planned lessons
Total number of planned lessons: 84
Hereof:
Common lessons in classroom/auditorium: 84
During the lectures we will explore numerical methods discussing the tehoretical and the physics-motivated background.
We will then implement such methods in a programming language such as MATLAB.
Other planned teaching activities:
- preparation of exercises in study groups
- preparation of projects