MM834: Partial differential equations: theory, modelling and simulation
Comment
Entry requirements
A Bachelor’s degree in mathematics, physics or computer science.
The course cannot be chosen by students, who passed MM546.
Academic preconditions
Students taking the course are expected to:
 Have knowledge of calculus, linear algebra, real analysis, integration theory and Banachspaces.
 Be able to use python scripting and numerical methods to solve algebraic and ordinary differential equations.
Participant limit
Course introduction
engineering by partial differential equations. To analyze and solve
these equations both by analytic tools (when appropriate) and by
computational methods.
The course builds on the knowledge acquired in
the courses MM536 (Calculus for mathematics), MM538 (Algebra and linear
algebra), MM533 (Mathematical and Numerical Analysis), MM547 (Ordinary
differential equations: theory, modelling and simulation), and MM548
(measure and integration theory, Banachspaces).
high multidisciplinary value and gives an academic basis for a Master
Project in several core areas of Natural Sciences.
In relation to the competence profile of the degree it is the explicit focus of the course to:
 Give the competence to :
 handle complex and developmentoriented situations in study and work contexts.
 Identify needs and plan individual learning
 Give skills to:
 analyze practical and theoretical problems using numerical simulations based on suitable mathematical models.
 Analyze qualitative and quantitative properties of mathematical models.
 Explain and evaluate errors in modeling and simulation
 Explain and select relevant analytic and solution models
 Formulate and present problems and solutions to fellow students and partners
 Give knowledge and understanding of:
 mathematical modelling and numerical analysis of problems in natural science and engineering.
 theory, methods and praxis within applied mathematics.
Expected learning outcome
The learning objectives of the course are that the student demonstrates the ability to:
 Be able to deal with partial differential equation models for complex processes in science.
 Classify 2nd order PDEs and describe their characteristic properties.
 Analyze and simulate partial differential equations using appropriate, advanced methods and modern software.
 Construct, implement and analyze numerical methods to compute (approximate) solutions to partial differential equations.
 Understand the mathematical theory for numerical methods for PDEs.
 Design and perform reliable simulations of PDE models for complex processes in science.
 Give a seminar presentation of the individual project and answer supplementary questions.
Content
The following main topics are contained in the course:
 Classification of 2nd order PDEs: Elliptic, parabolic and hyperbolic problems.
 Elliptic boundary value problems and Galerkin Finite Elements.
 Variational formulation, ellipticity, and the LaxMilgram theorem.
 Sobolev spaces, CauchySchwarz and Poincare inequalities.
 The poisson equation: Variational form, ellipticity, and FEniCS implementation.
 Galerkin's method, Galerkin orthogonality, best approximation, and error analysis.
 Finite elements for the Poisson equation, error bounds by duality.
 Neumann, Dirichlet, and Robin boundary conditions.
 divgrad operators and FEniCS.
 Parabolic PDEs: The heat equation.
 RungeKutta time stepping in variational form.
 SDIRK methods and Lstability.
 Simulation of the heat transfer.
 Parabolicelliptic systems: NavierStokes equations
 Chorin’s projection method.
 Incremental pressure correction – IPC method
 Simulation of incompressible flow with heat transfer
 Adaptive calibration of PDE models
Literature
Examination regulations
Exam element a)
Timing
Tests
Project assignment with oral presentation
EKA
Censorship
Grading
Identification
Language
Examination aids
To be announced during the course
ECTS value
Additional information
Reexam in the same exam period or immediately thereafter.The examination form for reexamination may be different from the exam form at the regular exam.
Indicative number of lessons
Teaching Method
Teacher responsible
Timetable
3 
Monday
18012021

Tuesday
19012021

Wednesday
20012021

Thursday
21012021

Friday
22012021


08  09  
09  10  
10  11  
11  12  
12  13  
13  14  
14  15  
15  16 