DM847: Introduktion til bioinformatik
Indgangskrav
Faglige forudsætninger
Studerende, der følger kurset, forventes at:
- Have grundlæggende viden i sandsynlighedsregning
- Have grundlæggende viden i algoritmik
- Have færdigheder i programmering
Formål
Formålet af kurset er at give en introduktion til forskning i bioinformatik. I hver forelæsning vil vi begynde med et konkret biologisk og/eller medicinsk spørgsmål, lave det om til et problemformulering, der kan løses af en computer, designe en matematisk model, løse denne og endelig aflede og evaluere svar fra modellen, som giver mening i den virkelige verden. Kursets formål er at give grundlæggende indsigt i moderne forskning i bioinformatik. Kurset giver viden om datalogiske modeller og metoder beregnet til anvendelser i biologi og medicin.
Kurset giver et videnskabeligt grundlag for at løse bioinformatik problemer ved modellering og implementering af edb-programmer. Kurset giver også et videnskabeligt grundlag for at analysere fordele og ulemper ved forskellige datalogiske metoder in bioinformatik, udvikle nye varianter af de lærte metoder, hvor det konkrete problem kræver det, og formidle forskningsbaseret viden og diskutere professionelle og videnskabelige problemstillinger med både fagfæller og ikke-specialister.
I forhold til uddannelsens kompetenceprofil har kurset eksplicit fokus på:
- at give kompetence til at planlægge og udføre grundlæggende bioinformatiske opgaver
- viden om typisk supervised og unsupervised data mining metoder
- anvendelse af typisk netværk enrichment og NGS sekventering data analysemetoder
- udvikling af nye omik data mining platforme og software
- planlægge og udføre videnskabelige projekter på højt fagligt niveau herunder styre arbejds- og udviklingssituationer, der er komplekse, uforudsigelige og forudsætter nye løsningsmodeller
- kunne igangsætte og gennemføre fagligt og tværfagligt samarbejde og påtage sig professionelt ansvar
- kunne tage ansvar for egen faglig udvikling og specialisering
Målbeskrivelse
For at opnå kursets formål er det læringsmålet for kurset, at den studerende demonstrerer evnen til at:
- forklare og forstå det centrale dogma i molekulær biologi, centrale aspekter af genregulering, basisprincipper af epigenetisk DNA-ændringer og specialiteter m.h.t. bakterie & phage genetik
- modellere ontologier for biomedicinske dataafhængigheder
- designe databaser til systems biologi
- forklare og implementere metoder til analyse af DNA & aminosyre sekvenser (HMMs, scoringmatricer og efficient statistik med disse på datastrukturer som for eksempel suffix arrays)
- forklare og implementere statistiske læringsmetoder på biologiske netværk (network enrichment, GraphLets)
- forklare specialiteter af bakteriel genetik (operonforudsigelsestrick)
- forklare og implementere metoder for suffixtræer, suffixarrays og Burrows-Wheeler-transformationen
- forklare de novo sekvensmønster screening med EM algoritmen og entropimodeller.
- Forklare og implementere grundlæggende metoder til supervised og unsupervised data mining, samt deres anvendelse på biomedicinske omik datasæt
Indhold
Kurset indeholder følgende faglige hovedområder:
- det centrale dogme i molekulær genetik, epigenetik og bakteriel og phage genetik
- design og konstruktion af databaser for molekulærbiologiske data (ontologies, eksempler på databaser: NCBI, CoryneRegNet, ONDEX)
- analyse af DNA og aminosyre sekvens mønster model (HMMS, scoringsmatricer, blandede modeller, efficient statistik med dem på store datasæt)
- specialiteter i bakteriel genetik (sekvens modeller og funktionelle modeller for operonforudsigelse)
- de novo identifikation af transkriptionsfaktorbindingsmotifer (rekursiv forventingsmaksimering, entropi-baserede modeller)
- analyse af næste generations DNA sekvens datamængder (memory-aware short sequence read mapping data ved hjælp af Burrows Wheeler transformationen og suffix arrays, bi-modal peak calling)
- visualisering af biologiske netværk (graflayout: små men stærk variable grafer vs. store men mere statiske grafer)
- systems biologi og statistik på netværk (network enrichment with CUSP
- jActiveModules og KeyPathwayMiner, Graphlet degree signatures)
- Grundlæggende supervised og unsupervised metoder klassificeringskriterierne for omics dataanalyse
Litteratur
Eksamensbestemmelser
Forudsætningsprøve a)
Tidsmæssig placering
Udprøvninger
Obligatoriske opgaver
EKA
Censur
Bedømmelse
Identifikation
Sprog
Hjælpemidler
ECTS-point
Uddybende information
Eksamenselement a)
Tidsmæssig placering
Udprøvninger
Mundtlig eksamen
EKA
Censur
Bedømmelse
Identifikation
Sprog
Hjælpemidler
ECTS-point
Vejledende antal undervisningstimer
Undervisningsform
På naturvidenskab er undervisningen tilrettelagt efter trefasemodellen dvs. intro, trænings- og studiefasen.
Disse undervisningsaktiviteter udmønter sig i en anslået vejledende fordeling af arbejdsindsatsen hos en gennemsnitsstuderende på følgende måde:
- Introfase (forelæsning) - Antal timer: 41
- Træningsfasen: Antal timer: 45 heraf; eksaminatorie: 41 timer og ekskursion: 4 timer
Aktiviteter i studiefasen:
- Løse opgaver
- Læse den tildelte literatur
- Øve at anvende den tilegnede viden
Ansvarlig underviser
Skemaoplysninger
Administrationsenhed
Team hos Registratur
Udbudssteder
Anbefalede studieforløb
Overgangsordninger
Se overgangsordninger for alle kurser på Det Naturvidenskabelige Fakultet.