DM545: Lineær og heltalsprogrammering

Det Naturvidenskabelige Studienævn

Undervisningssprog: På dansk eller engelsk afhængigt af underviser, men engelsk ved internationale studerende
EKA: N330047102
Censur: Ekstern prøve
Bedømmelse: 7-trinsskala
Udbudssteder: Odense
Udbudsterminer: Forår
Niveau: Bachelor

STADS ID (UVA): N330047101
ECTS-point: 5

Godkendelsesdato: 02-10-2019


Varighed: 1 semester

Version: Godkendt - aktiv

Kommentar

Kurser afløser 15012321(tidligere UVA) studerende der tidligere har fulgt denne udgave tilbydes en sidste reeksamen juni 2019 på gammel vilkår.

Fælles undervisning med DM559, Lineær- og heltalsprogrammering 

Kurset kan ikke følges af studerende, der: har bestået DM559

Kurset er valgfrit for følgende studieordninger / The course is optional in the following curricula: Computer Science, Applied Mathematics, Mathematics

Indgangskrav

Kurset kan ikke følges hvis DM559 er bestået, eller hvis DM559 indgår obligatorisk i din studieordning 

Faglige forudsætninger

Studerende, der følger kurset, forventes at: 
  • Have kendskab til indholdet af kurset: DM507 "Algoritmer og datastrukturer " eller have opnået kendskab til indholdet af DM507 "Algoritmer og datastrukturer” samtidig med at dette kursus undervises
  • Kendskab til Linear Algebra
  • Kunne programmere

Formål

Lineær og heltalsprogrammering er et felt i skæringspunktet mellem
matematik og datalogi, der har set en stor udvikling i de sidste 60 år.
Det giver de værktøjer, der er kernen i operationsanalyse, den
disciplin, der giver analysemetoder til at hjælpe at træffe bedre
beslutninger. Det primære fokus for lineær og heltalsprogrammering er på
ressource begrænset optimeringsproblemer, der kan beskrives ved hjælp
af lineære uligheder og en lineær objektivfunktion. Disse problemer kan
opstå i beslutningsprocessen i flere sammenhænge, såsom
produktionsindustri, logistik, sundhedssektor, uddannelse, finans,
energiforsyning og med flere. Indholdet af kurset har derfor en høj
praktisk relevans. 

Kurset har til formål at sætte den studerende i
stand til at anvende matematisk modellering til at løse praktiske
optimeringsproblemer og at arbejde med en matematisk softwaresystem til
at finde numeriske løsninger på disse problemer. For at nå disse mål vil
kurset give til den studerende viden om de grundlæggende principper for
lineær programmering og dualitet teori og om de vigtigste løsning
teknikker til lineær og heltalsprogrammering, såsom simplex metoden,
branch and bound og cutting planes.

Kurset bygger oven på den
viden, der er erhvervet i kurset DM507 "Algoritmer og datastrukturer",
og giver et fagligt grundlag for at lave et bachelor/master thesis
projekt og andre både teoretiske og praktiske studie-aktiviteter så vel
som at studere emnerne for andre valgfri kurser, der kan vælges i MatØk,
Anvendt Matematik eller andre uddannelsen.

I forhold til uddannelsens kompetenceprofil har kurset eksplicit fokus på at:

  • Give kompetence til at håndtere komplekse og udviklingsorienterede situationer i studie- og arbejdssammenhænge
  • Give
    færdigheder i at beskrive, analysere og løse matematiske
    problemstillinger ved anvendelsen af metoder og modelleringsformalismer
    fra områder af matematik og datalogi 
  • Give færdigheder i at træffe og begrunde fagligt relaterede beslutninger
  • Give
    færdigheder i at beskrive, formulere og formidle problemstillinger og
    resultater til enten fagfæller og ikke-specialister eller
    samarbejdspartnere og brugere
  • Give viden om hvordan visse optimeringsproblemer kan løses ved hjælp af lineær- og heltaltsprogrammering
  • Give viden om at kunne forstå og reflektere over teorier, metoder og praksis inden for det matematiske fagområde

Målbeskrivelse

For at opnå kursets formål er det læringsmålet for kurset, at den studerende demonstrerer evnen til at:

  • opstille en matematisk (lineær) model ud fra en problemskrivelse i ord.
  • opskrive det duale program for et givet lineært program.
  • anvende Simplex algoritmen på simple lineære programmer.
  • anvende branch and bound til at løse små problemeksempler.
  • udlede Gomory cuts og anvende cutting plane algoritme i små problemeksempler.
  • anvende
    teorien fra kurset til at løse praktiske optimeringsproblemer, som for
    eksempel strømningsproblemer, matching problemer, pakningsproblemer,
    simple skeduleringsproblemer etc.
  • anvende et computerværktøj til løsning af lineær og heltals programmeringsproblemer.
  • tænke nyt med at se muligheder for anvendelsesorienteret brug af teoretisk viden i industriverden.

Indhold

Kurset indeholder følgende faglige hovedområder:
  • Linær programmering og Simplexmetoden
  • Dualitetsætningen
  • Heltals programmering og branch and bound og cutting plane algoritmer
  • Min cost flow problem og dets anveldenser
  • Programpakker til at løse lineær- og heltals programmeringsproblemer.

    Litteratur

    Se BlackBoard for pensumlister og yderligere litteraturhenvisninger.

    Eksamensbestemmelser

    Eksamenselement a)

    Tidsmæssig placering

    Forår

    Udprøvninger

    Obligatoriske opgaver i form af short-answer tests, der laves i løbet af undervisningen

    EKA

    N330047102

    Censur

    Ekstern prøve

    Bedømmelse

    7-trinsskala

    Identifikation

    Studiekort

    Sprog

    Følger, som udgangspunkt, undervisningssprog

    Hjælpemidler

    Tilladt, nærmere beskrivelse af eksamensreglerne vil blive offentliggjort under 'Course Information' på kursets side i BlackBoard’.

    ECTS-point

    5

    Uddybende information

    Eksamensformen ved reeksamen kan være en anden end eksamensformen ved den ordinære eksamen.

    Vejledende antal undervisningstimer

    52 timer per semester

    Undervisningsform

    Undervisningsaktiviteter udmønter sig i en anslået vejledende fordeling af arbejdsindsatsen hos en gennemsnitsstuderende på følgende måde:
    • Introfase (forelæsning, holdtimer) - 26 timer
    • Træningsfase: 26 timer, heraf 22 timer eksaminatorie og 4 timer laboratorie

    I introfasen introduceres og perspektiveres begreber, teorier og modeller. I træningsfasen træner de studerende færdigheder og trænger dybere ned i det stof.

    Aktiviteter i studiefasen:

    • Læse den tildelte litteratur
    • Løse hjemmeopgaver
    • Anvende den tilegnede viden i praktiske opgaver

    Ansvarlig underviser

    Navn E-mail Institut
    Marco Chiarandini marco@imada.sdu.dk

    Skemaoplysninger

    29
    Monday
    13-07-2020
    Tuesday
    14-07-2020
    Wednesday
    15-07-2020
    Thursday
    16-07-2020
    Friday
    17-07-2020
    08 - 09
    09 - 10
    10 - 11
    11 - 12
    12 - 13
    13 - 14
    14 - 15
    15 - 16
    Vis fuldt skema

    Administrationsenhed

    Institut for Matematik og Datalogi (datalogi, fiktiv)

    Team hos Registrering & Legalitet

    NAT

    Anbefalede studieforløb